打开APP

AI生物科技公司「Ensem」完成6700万美元A轮融资,GGV纪源资本领投

Ensem 汇聚了众多领域内奠基科学家,并于2021年中正式在波士顿落地运营。根据官网的介绍,Ensem 是一家以管线开发为主的 Tech & AI 制药公司,瞄准高价值和“难成药”靶点,基于蛋白质/RNA动态构象变化集开发创新型小分子药物(Kinetic Ensemble-based Drug Discovery)。

投资界(ID:pedaily2012)4月7日消息,Tech & AI 制药公司 Ensem Therapeutics(以下简称“Ensem”)宣布完成6700万美元A轮融资,并正式走出隐匿模式。本轮融资由GGV纪源资本领投,Pavilion Capital、Cenova Capital、Mitsui & Co. Global Investment, Inc.、CBC Group跟投。本轮所筹资金将会用于管线推进及平台发展。

Ensem 汇聚了众多领域内奠基科学家,并于2021年中正式在波士顿落地运营。根据官网的介绍,Ensem 是一家以管线开发为主的 Tech & AI 制药公司,瞄准高价值和“难成药”靶点,基于蛋白质/RNA动态构象变化集开发创新型小分子药物(Kinetic Ensemble-based Drug Discovery)。公司目前主要聚焦于肿瘤治疗领域,未来还将会布局遗传病及其它疾病领域。

“Ensem 技术平台最大的差异化在于同时在湿实验(生物物理学、化学生物学)与计算(计算化学、人工智能)两个维度进行技术创新和迭代。接下来,Ensem 将继续发展和迭代全球生物大分子动态结构研究的技术,以攻克更多新药研发中的‘难成药靶点’。”Ensem 联合创始人、CEO Sean Cao(曹武雄)博士说。Ensem 的首条管线正处于先导化合物的优化阶段(lead optimization),计划未来3-5年推进至少一条在研管线进入临床研究阶段。

“在过去五六年的时间里,我们见证了 AI制药领域的发展,也看到了领域内尚需要优化和开拓的空间。AI 在新药研发领域目前依然处于辅助地位,计算、AI 与创新实验技术相合依然是目前新药研发主流手段。随着 AlphaFold2 的诞生,AI 对新药研发产生巨大影响,但是 AlphaFold2 依然存在很多局限性,包括预测蛋白动态构象变化,这也是我们希望解决的问题。”曹武雄说。正是看到了 AI制药领域存在的机会,Ensem 团队决定将 AI 等新工具应用于新药研发,通过围绕靶标动态结构寻找特异性结合口袋,开发 FIC(First-in-Class)或者 BIC(Best-in-Class)的创新型小分子药物。

GGV纪源资本合伙人吴陈尧表示:“AI+药物研发作为想象空间巨大的交叉领域,有望为传统药物研发困境带来革命性的突破。而 Ensem 作为这一赛道的新锐,对新一代药物发现有着深刻的洞察力和经验积累,具备极大潜力。”

GGV纪源资本高级投资经理范超表示:“Ensem 基于 AI 和湿实验平台,研究靶标动态构象变化集及速率,能够颠覆性地研发传统难成药靶点药物。团队囊括如 NMR (核磁共振)动态解析技术、Elastic Net、Rosetta 和人工智能强化学习的主要发明者和领军人物,具备深厚的技术沉淀。”

GGV纪源资本坚信在CEO曹武雄博士、CSO金圣芳博士及其他诸位资深科学家创始团队的带领下,Ensem 将有望成为世界顶级的创新药物研发平台型企业,不断攻克更多难成药靶点,高效地推进管线,持续创造社会价值。

汇聚领域内奠基科学家

Tech & AI制药公司的成功离不开创始团队丰富的计算和药物研发经验。“制药是一个非常复杂的过程,对生物学、化学、药代动力学、计算化学、生物物理学及结构生物学都有一定的要求,解析靶标生物学空间离不开机器学习和计算模拟。”Ensem联合创始人、总裁兼CSO金圣芳博士强调道。Ensem 的研发团队由原 Agios 研发高管、Relay、Editas、Skyhawk、Novartis、BMS 等明星生物科技/跨国制药公司资深科学家组成,Tech & AI平台由一批美国科学院院士及其初代弟子、领域内全球奠基科学家共同支持建立。

“我认为AI制药公司最大的价值最终需要依托药物体现出来。作为一家管线主导的AI制药公司,强大的药物研发实力将是管线开发的重要支撑。” 金圣芳说。据悉,金圣芳领衔成立了一支经验丰富的制药团队,这支队伍也是 Ensem 的核心力量。

Ensem 新药研发领导团队包括若干前 Agios 总监级别资深科学家,药物化学副总裁Tao Liu 博士、计算化学副总裁 Minghong Hao 博士、DMPK副总裁 Raj Nagaraja 博士;生物学高级副总裁由前 Skyhawk 肿瘤生物学副总裁 Tai Wong 博士担任;运营副总裁由前诺华波士顿研发运营负责人 Katya Henderson 担任。

瞄准靶标动态结构变化

首条管线正处于先导化合物的优化阶段

作为组成生命的基本单元,蛋白质/RNA一直处于不断运动过程中。通过不断运动,蛋白质/RNA得以执行一些特定的生物学功能。以新药研发为例,靶点蛋白/RNA的构象会在生理过程中发生形态变化,利用分子构象中出现的不同构象集(ensemble)及构象的变化速率 (kinetics),筛选出最佳结合位点进行药物设计,是靶向药研发的一大新方向。业内也越来越认识到解析动态结构对于深度还原靶标完整结构的重要性,当前处于这一细分赛道的初创公司日益增多。

部分基于蛋白构象变化的新药研发公司。备注:Relay成立4年即登录纳斯达克,彼时开盘涨超75%,市值近30亿美元。上市前累计融资5.2亿美元,由Third Rock Venture孵化,投资方包括软银愿景、谷歌风投等。上市时,该公司已经有两条在研管线进入IND阶段。

然而,作为新兴领域,当前对靶标动态学研究远没有静态结构研究普及。“此前通过 X-Ray 晶体衍射、传统 NMR、冷冻电镜等常用方式是解析蛋白质不同状态下的静态结构,就像为蛋白质拍照一样,而利用这种拍照的方式往往只能观察到蛋白质某个状态的结构;我们选用的新策略是通过为蛋白质录像的方式,通过湿实验直接观测并结合计算分析,连续纪录蛋白质动态结构变化,精确还原靶点蛋白在生理过程中的连续构象变化,捕捉到某个与其功能相关的关键结合口袋,从而筛选和优化小分子化合物。”曹武雄介绍道。

“静态状态下靶点分子上的变构结合口袋非常相似,而当靶标分子动起来的时候,每个结合口袋的形态各异,这样能够筛选出最佳的小分子结合口袋。”金圣芳补充道。

根据该公司的说法,要实现这种“摄像”方式比较复杂,对新工具和新技术的要求也比较高,需要同时整合多种技术手段才能精准解析出来。

曹武雄指出,Ensem 现已搭建起用于研究蛋白及核酸构象变化的生物物理学及计算平台,其中涵盖了独特且最新的NMR动态解析技术、最前沿的非变性质谱技术、冷冻电镜以及 X-Ray 晶体衍射方法等。这些方法会与 Ensem 自主研发且迭代的“计算化学杂化模型”、“人工智能深度学习模型”平台结合,帮助研究人员发现靶标的“隐秘口袋”及结构动态变化过程,从而找到最佳结合口袋,辅助“难成药靶点”进行药物设计。

据悉,Ensem 目前首条管线处于先导化合物优化(Lead Optimization)阶段,聚焦肿瘤,预计今年底或者明年初进入可能进入 PCC 阶段。未来,3-5年内会不断开发新靶点,且计划至少推进一条管线进入临床试验中。

【本文由投资界合作伙伴投资界讯授权发布,本平台仅提供信息存储服务。】如有任何疑问题,请联系(editor@zero2ipo.com.cn)投资界处理。

相关资讯

相关企业

AI数据总览

最新资讯

热门TOP5热门机构 | VC情报局

去投资界看更多精彩内容
【声明:本页面数据来源于公开收集,未经核实,仅供展示和参考。本页面展示的数据信息不代表投资界观点,本页面数据不构成任何对于投资的建议。特别提示:投资有风险,决策请谨慎。】